1659

## Polyethyleneimine and Macrocyclic Polyamine Silica Gels Acting as Carbon Dioxide Absorbents

## Tetsuo Tsuda\* and Tsuyoshi Fujiwara

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Kyoto 606-01, Japan

A dimethylformamide or water suspension of amino-silica gels, which are silica gels bound with polyethyleneimines or macrocyclic polyamines through a covalent bond, absorbed  $CO_2$  effectively and reversively.

Development of efficient methods of  $CO_2$  recovery from industrial waste gases *etc.* is important in relation to both reutilization of  $CO_2$  as carbon resources and an atmospheric environmental issue concerned with the 'greenhouse effect'.

One of the most commonly used processes for  $CO_2$  recovery is chemical absorption using an aqueous solution of amines [eqns. (1) and (2)].<sup>1</sup> Synthesis of a solid  $CO_2$  absorbent of amino-silica gels by attaching amines to silica gels through a covalent bond is interesting because of their high  $CO_2$  absorption capacity along with their easy handling and recovery. To our knowledge, however, there is no report on this kind of solid  $CO_2$  absorbents.<sup>2</sup> Here we report  $CO_2$ 



| N : Si <sup>b</sup>    | M = 3001a      | <i>M</i> = 600<br><b>1b</b> | <i>M</i> = 1800<br>1c | <i>M</i> = 10 000<br><b>1d</b> |
|------------------------|----------------|-----------------------------|-----------------------|--------------------------------|
| 10:1( <b>A</b> )       | 0.27 [3.7]     | 0.30[5.1]                   | 0.31 [4.8]            | 0.20 [3.1]                     |
|                        | ( <b>5aA</b> ) | ( <b>5bA</b> )              | ( <b>5cA</b> )        | ( <b>5dA</b> )                 |
| 5:1( <b>B</b> )        | 0.27 [3.5]     | 0.30[3.5]                   | 0.29 [3.3]            | 0.19 [2.4]                     |
|                        | ( <b>5aB</b> ) | ( <b>5bB</b> )              | ( <b>5cB</b> )        | ( <b>5dB</b> )                 |
| Polyethyl-<br>eneimine | 0.38           | 0.33                        | 0.31                  | 0.27                           |

 $^a$  Values in square brackets are measured in mmol CO2 (g gel)^{-1}.  $^b$  Feed ratio.



Fig. 1 Reversible CO<sub>2</sub> uptake by **5bB** ( $\bigcirc$ , 120 °C) and **6e** ( $\bigcirc$ , 80 °C) in DMF

uptake by amino-silica gels derived from polyamines such as polyethyleneimines and macrocyclic polyamines from the standpoint of developing an efficient  $CO_2$  absorbent.

$$2 \operatorname{RR'NH} + \operatorname{CO}_2 \rightleftharpoons \operatorname{RR'NCO}_2^- + \operatorname{NRR'H}_2 \qquad (1)$$

$$RR'NCO_2^{-} + NRR'H_2 + H_2O \rightarrow HCO_3^{-} + NH_2RR' + RR'NH \quad (2)$$

Eight polyethyleneimine silica gels **5aA–dB** derived from four polyethyleneimines **1a–d** having different molecular masses and two macrocyclic polyamine silica gels **6e** and **f** derived from **2e** and **f** were prepared according to Scheme 1 using hydrolysis–condensation polymerization of **4** prepared *in situ* by alkylation of **1** and **2** with **3**. The amino-silica gels obtained were white to pale-yellow powders.

A CO<sub>2</sub> absorption experiment was carried out under a nitrogen atmosphere using the amino-silica gel (ca. 0.1 g) in a 290 ml two-necked flask closed with a rubber septum. An excess of CO<sub>2</sub> gas, usually 20.0 ml, and 10.0 ml of methane gas as a GC (gas chromatography) internal standard were added through the rubber septum by a hypodermic syringe and the CO<sub>2</sub> absorption was monitored by GC. In the case of the CO<sub>2</sub> absorption by an amino-silica gel suspension, a dispersion medium of 2.50 ml was used.

CO<sub>2</sub> absorption by **5aA–dB** and **6e** and **f** at 30 °C under a nitrogen atmosphere, where the CO<sub>2</sub> absorption presumably takes place according to eqn. (1), proceeded slowly to show low CO<sub>2</sub> absorption capacity of 0.3–0.7 mmol CO<sub>2</sub> (g gel)<sup>-1</sup> after *ca*. 3 h.

The CO<sub>2</sub> moiety fixed in the amino-silica gel **6e** was demonstrated by IR spectroscopy and gasometry. Thus, the carboxylated **6e** showed two broad IR absorptions assignable to the CO<sub>2</sub> moiety<sup>2,3</sup> at 1580 and 1330 cm<sup>-1</sup>, which were not



**Fig. 2** Temperature dependence of CO<sub>2</sub> uptake by amino-silica gels in DMF (—) and in H<sub>2</sub>O (- - -) for **6e** ( $\bigoplus$ ), **6f** ( $\bigcirc$ ) and **5cA** ( $\blacksquare$ )

observed in **6e**. The carboxylated **6e** prepared under a  $CO_2$  pressure of 50 kg cm<sup>-2</sup> exhibited these two absorptions with increased intensities. The carboxylated **6e** evolved  $CO_2$  gas by heating at 120 °C to restore the original IR spectrum of **6e**.

Interestingly, the addition of a polar solvent such as dimethylformamide (DMF) or water was found to promote remarkably the  $CO_2$  absorption of **5aA–dB**. Thus, their suspensions in DMF exhibited a much greater  $CO_2$  absorption capacity than that of **5aA–dB** themselves, the activities were determined after *ca*. 1 h and are shown in Table 1.

CO<sub>2</sub> absorption capacity per nitrogen atom [mol CO<sub>2</sub> (g N atom)<sup>-1</sup>] of **5aA-dB** in DMF was calculated using their nitrogen elemental analyses, which are also included in Table 1 together with that of **1a-d** in DMF. It is noteworthy that, in DMF, the nitrogen atom of **5aA-dB** exhibited similar CO<sub>2</sub> absorption capacity to that of the nitrogen atom of **1a-d**. In other words, liquid polyethyleneimines could be 'solidified' without reducing their CO<sub>2</sub> absorption capacity by their conversion into polyethyleneimine silica gels. The DMF suspension of macrocyclic polyamine silica gels behaved similarly; CO<sub>2</sub> absorption capacities of **6e** and **6f** were 1.9 and 1.8 mmol CO<sub>2</sub> (g gel)<sup>-1</sup> [0.23 and 0.20 mol CO<sub>2</sub> (g N atom)<sup>-1</sup>], respectively.

A suspension of **5bA** or **6f** in water also absorbed  $CO_2$  effectively; 5.0 and 2.3 mmol  $CO_2$  (g gel)<sup>-1</sup> [0.32 and 0.26 mol  $CO_2$  (g N atom)<sup>-1</sup>], respectively, where  $CO_2$  uptake presumably proceeds by intermediacy of the ammonium hydrogencarbonate as shown in eqn. (2). By comparison, the  $CO_2$  absorption capacity of **1b** and **2f** in water were 0.34 and 0.48 mol  $CO_2$  (g N atom)<sup>-1</sup>, respectively.

Reversibility of CO<sub>2</sub> absorption by the amino-silica gel at 30 °C and CO<sub>2</sub> release from the carboxylated amino-silica gel by heating was demonstrated in DMF using **5bB** and **6e** (Fig. 1).

Fig. 2 shows temperature dependence of  $CO_2$  absorption of the amino-silica gels. Macrocyclic polyamine silica gels are featured with facile  $CO_2$  release in DMF at lower temperature.

Thus, the suspension of the amino-silica gel in DMF or water acts as an effective  $CO_2$  absorbent. It is formally situated between a liquid  $CO_2$  absorbent and a solid  $CO_2$ absorbent: it retains a feature of the liquid  $CO_2$  absorbent, *i.e.* the high  $CO_2$  absorption capacity and it also has a characteristic of the solid  $CO_2$  absorbent, *i.e.* facile recovery of the absorbent by filtration. The  $CO_2$  absorption capacity [mmol  $CO_2$  (g gel)<sup>-1</sup>] of **5aA-dB** and **6e-f** in DMF or water is comparable to that<sup>4</sup> of solid  $CO_2$  absorbents of zeolites, which are a representative solid  $CO_2$  absorbent absorbing  $CO_2$  physically.

The authors are grateful to Sumitomo Seika Chemicals Co., Inc. for partial financial assistance to this study.

Received, 7th August 1992; Com. 2/04280K

## 1 For example, G. Sartori and D. W. Savage, *Ind. Eng. Chem. Fundam.*, 1983, **22**, 239 and references cited therein.

- 2 Interaction of CO<sub>2</sub> with aminoalkyltrialkoxysilane coupling agents on glass fibres has been reported from the standpoint of mechanical performance of fibreglass reinforced plastics. See, S. R. Culler, S. Naviroj, H. Ishida and J. L. Koenig, J. Colloid Interface Sci., 1983, 96, 69.
- 3 I. C. Hisatsune, Can. J. Chem., 1984, 62, 945; M. H. Chisholm and M. W. Extine, J. Am. Chem. Soc., 1977, 99, 782.
- 4 D. W. Breck, in Zeolite Molecular Sieves-Structure, Chemistry, and Use, Wiley, New York, 1974, p. 625.